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Cholesteric energies 

By JAMES T. JENKINS 
Department of Mechanics, The Johns Hopkins University? 

(Received 9 March 1970) 

Repeated observations of a uniformly twisted director field in cholesteric liquid 
crystals are used to motivate an expression for a free energy which is obtained as 
an expansion about this state. Terms quadratic in the director perturbation and 
the gradients of this perturbation are retained. Utilizing invariance arguments, 
i t  is possible to obtain significant simplification of the coefficients which appear 
in the expansion. A properly invariant form of the free energy is produced which 
agrees with the expansion for small excursions about a twisted state, and which 
assigns arbitrary values to the non-vanishing coefficients. 

The consequences of requiring that a free energy achieve a minimum at a 
twisted state are explored. A commonly usedform of the free energy for cholesteric 
liquid crystals is seen to be rather severely restricted by this requirement. A n  
alternative to this form is proposed which is a special case of the free energy 
previously produced. The particular form suggested attains a unique absolute 
minimum at a characteristic uniform twist. 

1. Introduction 
Liquid crystals are fluids composed of large, relatively rigid, rod-like mole- 

cules. At a point the molecules tend to align parallel to one another. The direction 
of this parallel will generally vary smoothly from point to point. The existence 
of this preferred direction gives rise to the anisotropic behaviour typical of these 
materials. For two common types of liquid crystals, nematic and cholesteric, the 
molecules are free to translate in any direction, and the material may flow. In  the 
continuum theory ofliquid crystals, asreviewed by Ericksen (1967 a) ,  the preferred 
direction is described by a vector field n(x, t ) .  The vector n is called the director. 

The nematic and cholesteric types of liquid crystals are distinguished by 
characteristic director orientations which are observed in static equilibrium. 
For nematic liquid crystals this characteristic pattern is a uniform parallel 
orientation. In  liquid crystals of cholesteric type, the equilibrium configuration 
often observed is that of a uniform twist. Here, the directors are everywhere 
perpendicular to a single direction. In any plane with this direction as a normal 
parallel orientation obtains. However, as this normal is traversed, the orientation 
changes in an uniform fashion. These ideal orientations, or recognizable distor- 
tions of them, are reported to occur in various materials of the same type; and, 
apparently, persist in samples of varying size and shape (Robinson, Ward & 
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Beevers 1958). As remarked by Ericksen (1966a, 1967a), these considerations 
suggest that these configurations are, for the particular type of material con- 
sidered, of relatively low energy, and represent states which are, in some sense, 
stable. 

To solve problems in the static theory for these liquid crystals one frequently 
employs a simple form for the free energy proposed by Frank (1958). This form 
is essentially obtained as an expansion about a uniform parallel orientation. 
Terms linear and quadratic in the director gradient are retained. While this 
procedure appears reasonable for liquid crystals of nematic type, it is not 
apparent that a free energy derived in this fashion applies to cholesteric liquid 
crystals. Here, we use the observations of the twisted equilibrium state in 
cholesteric liquid crystals as the basis for developing a quadratic free energy 
governing small excursions from this state. The occurrence of the basic twist and 
this quadratic energy are together used to motivate a general form of the free 
energy which may characterize liquid crystals of cholesteric type. 

2. Governing equations 
We consider the hydrostatic theory of liquid crystals as presented by Ericksen 

( 1 9 6 2 ~ )  and Leslie (1968q  6 ) .  We assume that the director n(x), which describes 
the orientation of the liquid crystal, is of fixed length and satisfies the normaliza- 

(2.1) tion condition n.n  = 1. 

Also, the liquid is considered to be incompressible. In  the static theory, the 
energy density W ,  interpreted as the Helmholtz free energy per unit volume, is 

W = W(n,Vn). (2.2) of the form, 

It is required that this energy remain unchanged when the material is rigidly 

W(Rn, R VnRT) = W(n ,  Vn) (2.3) rotated. Thus, 

where RT = R-l and detR = 1. (2.4) 
Then, derivatives of W with respect to n and V n  transform as tensors of the 
appropriate order. 

As Ericksen (1961) indicates, a consequence of (2.3) is 

For liquid crystals of cholesteric and nematic type, n and - n are physically 

(2.6) 
For liquid crystals of nematic type W is further restricted to remain invariant 

Using Leslie’s work, we may write down expressions for the stress t and the 

indistinguishable ; thus, 
W(n, Vn) = W (  - n, - Vn). 

under both proper and improper rotations. 

couple stress I which apply in a static isothermal state: 
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p is a material constant, and the pressure I, is an arbitrary function of position. 
At material boundaries, the surface force F is given, in terms oft and the outward 
normal to the boundary v, by 

4 = t i k v k ;  (2.10) 

and L, that portion of the surface moment which is independent of the surface 
force, is, in terms of I and v, 

Li = l i k V k .  (2.11) 

When external influences are absent, the equilibrium equations are 

tik,k = * (2.12) 

and (2.13) 

Here, the director tension A, is an arbitrary function of position. Equation (2.12) 
is satisfied if n is a solution of (2.13) and the pressure is given by 

p +  W = a = const. (2.14) 

3. A quadratic free energy 
Ericksen (1967 b) has proved that the director field 

ni = Ni = (cos8, sin8, 0) ,  (3.1) 

with e = bx3+c, (3.2) 

and b and c arbitrary constants, is a general solution of (2.13). That is, for some 
choice of A, the field (3.1) is a solution of (2.13) for any W which satisfies (2.3). 

Motivated, then, by the natural occurrence in cholesteric liquid crystals of 
equilibrium configurations resembling the field (3.1), we propose a free energy P 
obtained by expanding W about this uniformly twisted state. We write 

ni = N,+ui (3.3) 

and n i , k =  ~ , k + U i , k ~  

where N is given by (3.1). 
Then, in terms of N and u, the constraint (2.1) is 

(3.4) 

2NkUk+UkUk = 0. (3.5) 

In  the expansion we retain onIy terms linear and quadratic in u and Vu. Thus 

Here, for example, 

(3.7) 

and 

30-2 
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where derivatives shown with respect to N and VN indicate derivatives taken 
with respect to n and Vn evaluated a t  the state (3.1). For the remainder, we 
assume, without loss of generality, that 

(3.9) A(” = 0. 

4. Invariance arguments 

vanishing coefficients in the expansion (3.6). 
We use the invariance arguments of Ericksen (1967 b) to determine the non- 

For the field (3.1), W reduces to a function of 

e = bx,+c (4.1) 

and (4.2) 

We assume b + 0. 
Changing c in (4.1) amounts to a rigid rotation (2.4) of the material about the 

x,-axis. Because by (2.3) W is invariant under these rotations, it must be inde- 
pendent of 0;  hence, 

w = w(e’) = w(b). (4.3) 
The quantity 

transforms as a scalar under rotations about the x,-axis; then, by the same 
argument, 

= M(b).  
aw 

AT; ~ 

8% 3 
(4.5) 

Obviously, similar results obtain for combinations of N, VN and the higher 
derivatives of W which transform as scalars under rotations about the x,-axis. 
However, an immediate simplification occurs for those combinations in which the 
index 3 is repeated an odd number of times. 

Consider a 180” rotation about the x,-axis; then, for example, 

aW/aN3 = k(N, N’) = k( - N, - Nr). (4.6) 

However, a 180” rotation about N‘ gives 

k(N, N’) = - k(N, N’), (4.7)  

so 
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(4.26) 

is, according to (2.6), unaffected if the signs of N and N’ be reversed. Such SL 
change, combined with a 180” rotation about the x3-axis, leaves N and N‘ 
unaltered, but should take v --f -v. Thus, 

v(N, N’) = -v(N, N’) = 0; (4.27) 

so c ~ ~ ~ N L A ~ ~ ~  = 0. (4.28) 

A repetition of the argument gives 

ei3k N, A:zk = 0. (4.29) 

A consequence of (4.28) and (4.29) is 

A?] = 0, (4.30) 

where Greek subscripts take the values 1 and 2. 
In the same fashion, we obtain 

and 

Repeating the argument as often as necessary gives 

= 0. 
Finally, the observation that 

eskm N ;  N ;  A$$, = 0, 

ePk3 NiN;. Ai!& = 0, 

A&?p = Akyp = 0. 

and 

leads to 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 
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Still further restrictions on the coeecients may be obtained by utilizing the 
identity (2.5) or the identity differentiated with respect to n or Vn. Thus, (2.5) 
combined with (4.8) and (4.30) gives 

A$$ = 0. (4.37) 

Differentiating (2.5) with respect to n and using (4.8), (4.18) and (4.33), we find 
that 

and 

From (3.1) it follows that 
b%,,,Np = NL, 
€3paNL = bNp, 

and N ;  = - b2N,, 

with (4.42) and (4.43), (4.38) and (4.39) are 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

and 

2NkAi7- b'NpA&3 = 0 (4.45) 

b ~ 3 , p  A r )  + 2Ni A$ - bzNp A$: = 0. (4.46) 

Equation (4.40) implies that 
A@) - 0 a3 - 

A(4) - 0 and a33 - > 

with (4.47), (4.45) gives 
NpA$)3 = 0. 

(4.47) 

(4.48) 

(4.49) 

Upon taking the inner product of (4.46) with N', we find 

- bzNpAly"+ NANk2Aiy- bzNANpA$3 = 0. (4.50) 

The inner product of (4.41) with N is 

NpA$'-2AL\)+NaNjA&$)a = 0. (4.51) 

Differentiating the identity (2.5) with respect to Vn, and utilizing the information 
already determined, we obtain 

NbNaA&$l-2b2NpNaALzp3+NbA@ = 0, (4.52) 

NA Np A$); + NL ALIJ - 2b2Np N, A$)a3 = 0, 

- 2Nj A$&,, - dYa Aiy + 2NkAk9py - NY A$& - dyp A:? = 0, 

- Np A&"k, - 2NbAiT33 = 0, 

(4.53) 

(4.54) 

(4.55) 

- N  p A(4) 33a - 2" j3 A(5) 3a33 - - 0 Y (4.56) 

and 
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Equations (4.55) and (4.56) require 

A!& = 0, AfJ33 = 0, (4.58) 

and ALga = 0, = 0, (4.59) 
respectively. 

Last) the equation of motion (2.13) is, with the restrictions already obtained, 

(4.60) N i  Ay23 - 2b2Ng AkYp3 - A t )  = ANa. 

Respecting the identities 
b2aap = bzN, Nb + N; N i  

bG3,,g = Na Ni  - NL Nb, and 

(4.61) 

(4.62) 

we fhd that the most general forms for the coefficients which are compatible with 
the restrictions (4.8)-(4.25), (4.30), (4.33), (4.36), (4.37)) (4.47)-(4.51), (4.52)- 
(4.54), (4.57)-(4.59) and (4.60), are 

and 

Here, 
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and 

(4.86) 

(4.87) 

(4.88) 

The coefficients a, $., y . ,  I S . ,  and E .  are functions o f  b. 
If the representations (4.63)-(4.78) are used in (3.6), the relations (4.79) -(4.88) 

taken into account, and the constraint (3.5) utilized, after rearrangement and 
simplification, we may write the expansion for P, in an arbitrary Cartesian 
co-ordinate system, as 

= $1 Ni, kui,k f $2 Nk iUi ,k  + 462Nrn, k u i  U.k + 6 2 q ,  i N k  Ui  Uj, h. 

+ g [ b - 2 ( $ 1 + 6 2 ) N i , m N k , m ~ N p  + E 6 N i , m N k , n ~ q , s N p , s  

+ E ? N i ,  j&, p + P,b-'Ni 21j;cNm, j Nm. p + ~ s ( N i ,  k N p ,  j + N k ,  $8, p) 

+P2'-'(NiNp Nrn, j Nm, k + N k q  Nm,pNm, 4) + E I I ~ ,  iNp, 1; 

-I- '12 b P 2 4 N p  Nm, i Nm, k + (b2E6 - $1 - P 2 )  (4, k q ,  p -I- N k ,  i Np, j) 

+ E6 Nm, i&n, k N 9 ,  j-%, p ]  "i,j uk, p' (4.89) 

In  order to establish that we have exhausted the arguments limiting the 
coefficients which appear in (4.89), it is necessary to produce an energy W which 
assigns arbitrary values to the coefficients which remain. Such an energy is, for 
example, 

w = B, eijk ni nk, + B2( eiik ni nk, j)2 + B3 ni, nk ni, np 

+B4(nk, k)2+B5GkpGpk+B6GkpGpkerStn,n,s 

+B,C*'kpep,,,n,,,Gki~iuvnv, u + Bt3(GkpGpk)2, (4.90) 

where Gkp = + ( n k , p + n p , k ) .  (4.91) 

5. A general energy 
Here we explore the consequences of requiring that the energy W achieve a 

minimum a t  the twisted state. This requirement is consistent with stability 
criteria which result, by arguments analogous to Ericksen's (1966b), from the 
dynamical equations and the entropy inequality. 

The attainment of a minimum necessitates that, at this state, the first variation 
of W vanish 

Here, the allowed variations 6n and 6Vn are, according to the constraint (2 . l ) ,  
those for which 

ni6ni = 0 (5.2) 

and ni, ani + ni 6ni, = 0. (5.3) 

We satisfy (5.2) and (5.3) by introducing the infinitesimal rotation vector IR, 

6ni = eipqOpNq (5.4) 
so that 

and (5.5) '%, k =e ipq(  szp, k Nq + szp Nq, k). 
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Utilizing (5.4), (5.5) and the identity (2.5), we may write the condition (5.1) for 
an extremum of W in the form, 

0 0 -bu2 

%,k = u21 %2 %3 

u31 u32 u33 

Because 8 and VQ are arbitrary, (5.6) requires that both 

9 

and 

In terms of the coefficients in the expansion (3.6), the restrictions (5.7) and (5.8) 

(5.9) 
are 

and cjPn ND Ab2,' = 0, (5.10) 

which necessitate that p1 = p2 = 0. (5.11) 

It might be pointed out here, that for a form of the free energy for cholesteric 
liquid crystals proposed by Prank (1958), 

E ~ ~ ~ A L Y N ~ , ~  = 0 

A 

u' = k ( n k  ,kI2 + b ( € < j k n i n k ,  i + tiJ2 + k33(ni, k n k n i , p n p )  

- ( h ~ + ~ : 2 4 )  [ ( n k , k ) 2 - n i , k n k , i I ,  (5.12) 

the conditions (5.7) and (5.8) are fulfilled only if 

b = to (5.13) 

and (hZ+kZ,) = 0- (5.14) 

Although, for reasons given by de Gennes (1968a) and Ericksen (1962b), the term 
multiplied by (kZ2 + k24) in (5.12) does not affect the equilibrium equations (2.13), 
the restriction (5.14) seems sufficiently severe to motivate an attempt to obtain 
an alternative to (5.12). 

Resuming consideration of the general case, in order that the extremum 
achieved a t  the twisted state be a minimum, it is necessary that the inequality 

€i,,€kuv{"p(NvA~~)++,iA,4,) +Nv,jN,,SA&I Q p  Qu 

+ 2N,(N, +N,, AL?is) QP Qu,j + N,N, A&& Qp,s Qu, j} 2 0 (5.15) 

obtain. Thus, we may employ the inequality (5.15) and the representations (4.63)- 
(4.78) to restrict the quantities 01, y . ,  6., and E . .  Here, however, we use an equi- 
valent method which seems more direct. 

At a point, we choose a co-ordinate system so that 

and 

N$ = (1 ,0 ,0)  

Ni = (0, b, 0). 

(5.16) 

(5.17) 

(5.18) 
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withanerrorthatisquadraticinuandVu.Using (5.16), (5.17)) (5.18) with (5.11) 
in (4.89) we obtain 

2 3  = 6 2 ( 6 u 3 + ~ ~ 2 1 ) ~ + b ~ ~ g ( u ~ ~ + ~ . 3 3 ) ~ + b ~ ( ~ 7 ~ ~ 3 + 2 ~ 9 ~ 2 3 ~ . 3 2 + ~ 1 1 ~ . ~ 2 )  + ~ 1 2 ~ & .  (5.19) 

Hence, W is a minimum at the twisted state if and only if 

P1 = p2 = 0, (5.20) 

with 2 O )  €6 2 O> €12 > O )  (5.21) 

and E7 2 0 )  Ell 2 0, E;-€7E11 6 0. (5 .22)  

Consider a particular form of the free energy w given by (4.90): 

2 V  = a1(Eijknink,i+t)2+a2ni,lGnknj,pnp+a3(nk, lc)2 

+ 2a4( Gkp Gpk - i t2)  (eijk ni nk, + t) 
fa5Gpisijknk,jGpZEtrsns,rfa6(G~kGk~, -@'))". (5.23) 

If the material functions a. in (5.23) obey 

a2 B 0, a3 B 0, a5 2 0, (5.24) 

a,+a, > 0, ag-a,a, < 0, (5.25) 

then the energy w achieves a unique absolute minimum in a twisted state (3.1) 
with characteristic twist t = b. Also, if we calculate the appropriate derivatives 
of W and evaluate them at this minimum, we find 

6, = a2, E6 = a3, Ell = a1t-2,  

E, = a1 t-2 - 2a4t-1 + 4a6) 

Eg = -a,t-2+2a4t-l, 

EI2 = a2+a,t. 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

Notice that, as is to be expected, (5.24)-(5.25) and (5.26)-(5.29) ensure (5.21) and 
(5.22). Comparison of (5.23) with (5.12) indicates that contains those parts of 
$ which are consistent with the attainment of an extreme in the twisted state. 
Furthermore, with the identification (5.26)-(5.291, the free energy (5.23) is a 
properly invariant generalization of the expansion (3.6) when that expansion is 
performed about the characteristic, stable twisted state of the material. Finally, 
it  should be noted that the presence of the term multiplied by the coefficient a4 
allows this free energy to distinguish, for example, between increasing and 
decreasing the twist about the characteristic state. 

These features of the free energy (5.23) suggest that it is a general form of free 
energy applicable to cholesteric liquid crystals. We present it here as an alter- 
native to the form (5.12) proposed by Frank. The analysis of de Gennes (1968b) 
and the experiments of Durand et 61. (1969) indicate that, in one case, the use of 
(5.12) will yield predictions consistent with observation. However, when more 
detailed experimentation is performed, the need for such an alternative may 
become apparent. 

I am indebted to Professor J. L. Ericksen for his critical interest during the 
course of this research. This work was supported by the National Science 
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